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The veloci ty and sU~s fields behind the shock wave front are investigated by a 
ray m e ~ o d  in a f luke-dimensional  elastic viscoplastic medium with hardening. 
Recursion equations are obtained to determine the terms of the ray series. In the 
case of  load lxopagation by a spherical shock wave an analyt ical  solution is 
obtained for the veloci ty to second order accuracy in the distance along the nor- 
mal  from the wave front. The solution of  wave ]xoblems in elasticity theory by 
a wave method has been elucidated in [1], and in a one-dimensional  viscoelastic 
medium in [2]. 

1 .  An elastic viscoplastic body with a yield point dependent on the mean pressure, 
plastic s~rains, and plastic strain r a t e ,  is the model of the medium. The dependence of 
the yield point on the mean ~essure and plastic strain rate is assumed linear, and on the 
pla.~ic s~rain, arbitrary. The flow surface is taken as 

1, = (s,~ - -  ~he~f) (so - -  ~he~)  - -  2 (ko - -  a z  q-  ~ (eV) + v h (eV) [ ev l) 3 = 0 ( i . i )  

h = - -  (~ - -  ~o  - -  ~ - , [  e~' I - -  ~ l , I  ~ '  [ = 0 

Here 

wh~ 

ponenB, and ei/  are the strain tensor components. Summation over repeated subscripts 
is assumed ~roughout ,  where the Latin subscripts i, j . . . .  rake on the values 1 to 3, 
and the Greek letters a ,  ~ . . . .  the values 1, 2. 
In the suess space the flow surface is a closed cone (Fig, I) which expands depending 

1 / 3 ~ R ,  ~p ~ i '  p 8p  ~ 

are r~e componenB of the plastic strain razes, of] are the sl$'ess tensor corn- 

on ePj and ePf The sides surface and bouom of the 
cone are described by the first and second equations 
in (1.1),  respectively. The position of  ~he flow sur= 
face for E~ = 0 is shown by the solid line in Fig. 1. 
The dashed line shows the instanr~ueom state of  the 
flow surface for e~i=~O. The relationships (1.1) are 
a general izat ion of  the model 1xopo~d in [3] for 
soils when the influence of  viscosity and plastic s~ain 
on the change in the loading surface is taken into 

Fig. 1 

account .  It  is henceforth assumed that the strains are small and comprised of  two parts, 
elastic and plastic, e~j - -  eli ~- e~. The elastic strain tensor is related to the s~resses 
by Hooke's law 
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where Z, ~t ate the elastic parameten of  the medium. The spatial coecdinates ate assu- 
med to be Cartesian. The strains are exprened in terms of  displacements by meam of  
the  C a u c h y  formula 

eis = 1/, (U.s  "t- Us,,) 

The plastic s~ain raze mmc~ is connecu~d w/th the su~.ss ummr by the plasticity condi- 
tion and the auoclated plastic flow law. which in the case of a sr~ze of ~ ~ p o n d -  
ing to the side surface ]z ~ O,/~ ~ 0 of the flow condition is 

= ~ ~ --  ~ + 2~,~ i - , / , = ~  (k0 - ~ + P (e,)) ( i .2) 

ELiminating the parameter ~z from the plasUcity condition exlxessed by the fisst equa- 
tion in (1 . I ) .  and ~ e  associated plastic flow law (1.2) ,we find the dependence of the 
plastic strain ram on the svress 

V'~'= ~s~l,xl 6ij 2= (~ -- ~ + ~) 6~j, 

2 

If the szaze of stress in the body corresponds zo the bolzorn ]~ _.-- O, fz < 0 of the flow 
surface, then the as~ociazed flow law i~ 

af~ i 

E1iminaUng the paxarneter fxom the second equation of ( I .  I) and ( I .  4), we find 

,~-.l--~o + p., I @' I 8~  ( i . 5 )  

For the angular poin~ of the flow surface the p l~ t /c  ~ a i n  raze zensc~ ~ is relar~.d to 
the s ~  tensor by the plasticity condiUon ( I .  I) and the a~ociazed plastic flow law 

relationships O/z Oh ( i .6 )  

Eliminating the parameters ~z and ~2 from (1.6) and (1.1),  we obtain 

eup = "~~,..A.~ _ I/'E's~y { (~  - -  ,z= + B) ,q, .+ (= + ¢,,, + p., I@'l) "q"} .+_ '~ + ~ ,+P -  I.ePl 8.~.~ (1.7) 
~lx ~xlz V s~z s~ 

The equations describing the dynamic behavior of the medium aze 

au,  j - -  pv , ,  ~ = O ( 1 . 8 )  

£L~ p O, 
[ 

or  - -  o - -  o 0 - - ~ z l @ l - n 3 l e P t > 0  

Here vi am the componenzs of the displacement raze veczoL and q~ (ot/)  is the right 
side of (1.3), (1.5) or (1 .7 ) .  
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It can be shown [4] that  in media  described by the rheological  equations (1 .1)  there 
exist two kinds of waves of s~ong discontinuity, irtormtional and equivoluminal ,  which 
are propagated at the elast ic  wave velocit ies  ¢1 = ~/  (~ "~- 2~)  / p and c . = ~ / ~ t  / p.  
The  following relationships 

- -  c In, j] = ;~ Ivy] v~ + ~ ( [9 , ]  vj  + [vi i  v i ) ,  [ o , j ]  "~j -k  pc [v,]  = 0 ( i . 9 )  

are satisfied for discontinuities in the veloci t ies  and suesses on these waves. Here ~t is 
the unit vector  normal  to the wave surface, where [ui] = ~0v I on the i r ro~ t iona l  waves, 
where co ---- [ut] vi ' and [vii v~ = 0 on the equivoluminal  waves. 

2. Let us represent the solution in the plastic flow domain of the med ium for the 
veloci t ies ,  sn-..sses and straids as series in powers of h,  where h is the distance along 
the normal  behind the front of  the surface of strong discontinuit~ 

/ =/-1, . :  - -  h i% I~ + '/~ ~,,. 1~ - . - .  (2.i) 
Here / -  !~ , /~-  I~ . . . .  are values of  the functions on the front of this wave.  The series 
(2 .1)  for the veloci ty  behind the front has the form 

v~ = v~ + I~ - [v~l + h ( [ ,~ ,  ,,1 - ~ .  ~ I~) + . . -  (2.2) 

[~1 = (~'~+ - vl-)I~ 
Here the plus superscript refers to the value of the function ahead of the s~ong d/scon- 
t/nulty wave front, and the minus superscript to the value of the function behind the 
wave front. Analo~om series can be wr i t~n  for the stresses and plastic strains. 

Let us write (1 .8)  in the discontinuities. From the first-order k inemat ic  and geomeudc 
compat ib i l i ty  conditions [5] (xi = x~ ([/~, y ' ,  t) is the equation of the wave surface, 
xi~ = 0xi / 0F ~, g~a are components of the con~ravartant metr ic  tensor of  the wave 
surface and I/~, y" are curvi l inear  coordinates on the surface) 

[ I , , ]  = [ ] , .1  ~, + g"a[~] ,~x ,~ ,  [1,~ ] =  - - c [ [ , . ]  + ~ [ 1 ]  (2.3) 

and the relations (2. 2), we obtain an equation to determine the zero terms of the series 

(2, 2) following [43 5o)~ = c ~ o  + ~ i  (~. [e~] + 2~ [e~] v~v~) (2.4) 

8 [~'d 

Here 
Sl = (Qo - -  Koct) (1 - -  2~oct + Koc"t*') -1 

Q is the mean  curvature of  the wave surface a t  any instant, f~0, K0 are the mean 
and Gau.~lan curvat~n~s at the ini t ial  ins~anr~ To evalua te  the remaining terms of the 
ray expansion (2. 2). let us determine the discontinuities in the ve loc i~ /de r iva t ives  of  
any order [v~ .~ . . ]  on the surface of strong dlscontinuity. Members of  the series of  the 
plast ic st~aim and stresses also depend on the veloci ty  discontinuities and veloci ty  der i -  
vative~ on this surface. 

To  do th ls , le t  us differentiate (1 .8 )  m t imes with respect  to the normal  w the wave 
surface {f,a = ] ,zvl,  where vl are co-~ponents of  the unit vector  normal  to the wave 
front). Taking their difference at different sides of  the wave surface, we obtain 
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[.~,-+~) ,,~,,,÷u I ( I ~ " + ~ )  ] [ ~ , - * u  ]) ~ .  t,~...,~] = ~' q- u t " k, kn . . . n  . . . .  . ,  in . . .  n ~ j ,  i n . . . n  

~. top(,,,) ~ 6 ~ - - ~ [ s ~ . ( ~ >  1 (2.5) t ~ g K ,  n . . . t l  j tJ, ~ . . .  71: 

[~,, , .x) - -  [~"~J.) ,,1 = 0 "q~, J-... ,~] P ,, t,~... 

Not only the velocities and stresses, but also their derivatives of any order undergo a 
discontinuity on the s t z ~  discontinuity wave. The compatlblli ty conditions mint he 
satisfied for the discontinuities of the derivatives of these functiom on the wave. Gene-  
ralizing the derivation of the first- and second-order compatibili ty conditions [5], we 
obtain the geometric  and kinematic compat ib l l i~  conditions of any ordes for the dis- 
continuities of the derivatives [4(~) ~) [ ~ , ~ . . . , , l ,  ~ich 1,i,t...n ], have the following form: 

[ ~ . . .  ,,1 - ,~ (~  - u , - ~ )  , _ , , ( , , - ~ )  , 

(2.6) 

i f ,  ~ . . .  ~1 = - c u ,  ~... , ]  + ~ , ,  ~... ~, (2 .7 )  

where b=, are components of the second fundamental quadratic fc~,., of the surface. 
Subst/tuting the kinematic  compatibili ty condition (2. 7) into (2. 5), we obtain for the 
discontinuities in the quantities rvl re+x) ] and [a(n,.l) I t t , t n . . . n  i j , t n . . . ~ J .  

~ ' + ~ >  ] = ~ [~7, ~. . . .1  - -  ~ ~ .  ~ . . .  ,1 ~ - ~ , , - , .  ~,... , ,  + C , ~ ,  n . . . n ,  r , , (m+l )  (D~(m+l)  ] 

[ ~ " ' t )  . ] ) +  ~, re~ ' ( " )  ] 5~ + 21~ [e.P. c")  ] (2.8) ~, i n . . .  L g~,  n . . . n =  - tj ,  n . . . n J  

al re+z) ( - - c  [~.m+z) I -I- 6 i.~m ) I'~ ----- 0 . . , ) . . . . ~ ]  - -  p . - ~ . ~ . . . . .  ~ • , , , . . . . , ,  

Using the geometric compat ibi l i ty  conditions (2.6) for the discontinuities of the quart- 
, _(re+l) ] .  |a(.'m} n] ' titles lV~,in. , .nj '  "(re+x} ~ a n d  1" otL~n...n,(m+x) 1 , and eliminating quantities lO. :L, . . . ,~ . . .  O.n... 

from ( 2 .  8 ) ,  ice obtain 

(k q- F) r,,(m+x) l viv~ + (Ix pc =) [~m+x),] 2pc 6 - -  = - -  [~,,,~ ] - -  

= rv ,=  ~ , 6 l ~ . , _ t )  1 (2.9) i~g=~x~ [ g , ~  ..,,1 - -  ~g=~z~.~ ~ ~, ~,,...,,,.= - -  ~ {g=~z~ .g~, ,,...,,.,= + 

6-' h,,(~_t) l - -  (m - -  i) ga~g*'b=,=~.~ [ g~ , ) . . . n ]  x~;} + p t~"-' • ~.-...,,. 

[ a i . .  1 xt-: + 

g"~x~ ('h f e P  (m-,) 1 ~ ,  - -  2~  ier  ¢,--~)n ~ Z, top (.,. ,j. n...,, , ~ , . . . . , , .  , = ~ , . . . . , , . , =  t ~ , . . . . . ]  v~ q -  2~ [ e . n ¢ ~ )  ] v ~ ,  

m ---- I, 2, 3 . . . .  

To demrmine [eP], [£~,,~], [eP(m) a . . . .  i~,n...n~ it is necessary to use the relationships (1 .3) ,  
(1.5) ot (1.7). Multiplying (2.9) by % and summing over i, then setting pc ~ = )~ -~- 

• /m) l 2~t, we obtain a differential equation far the change in the quantities lv[,n...,, vi = 
~(m,) on the irrotational wave 
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2oc at 2p~o)~,.) + (~ + it) ~ ( [ t~ ) . . . , , ]  z~), s - -  

[~. ,~- l )  1 x t :  + p ~ + i t g ~ x i a v  i {g~'zi, .[t~ ~-1),, =...=,1, ~ + (m - -  i )gmg~,b~xjq  i. z , . . . , ,  

r , z , ,  [ ~ - : ! ~ 1 , ,  + ( m -  i )gpqr 'b~z ,q  15~?.. , ,]  z~-.}, ~ + 

- -  [ , j ,  k,~..., ,  ] - -  

"*(~ [~ , . - I )  ]~ + ~ , m g a ~ f , , b ~ o x ~  " ~.,~...,,.. . g~axi~, ~ , j ,~. . .= 1.- rv("-~} 1 -. ~- (2. t0)  

[~.m-1) 1 [~.m-i) 1, 2itgaSx/~vi [RP(m-i)I . - -  

kie,~. (~) 1 - -  2 ~ [ e ~  (~) l v i v ~ = O ,  m f f i t ,  2 ,3 ,  
/ f E ~  l l . . . / I J  • . . 

Let m set  m - -  1 imtead  of  m anti pc ~ = ~. + 2it in the system (2. 9). Mult iplying 
the equations obta ined  by X t t  and summing over i, we find the relatiomhil~ to deter- 

[U ( m )  l mine the components of the vectc~,  i,-...,, on the trrotat/onal wave which are tangent- 
ial to the f~ont 

(~  - -  pc  ~) [~. ' , ) . . .=l  z 4 ,  = - -  . - - ~ ,  ~ - -  

( 2 . 1 1 )  

it (m - -  t )  F ' b ~  ~t~ m-~) ~ ~ ( 2 f i z ~ . ~ +  

t ~ l j ,  n . . . n *  • ij, rt...n, 

At tum/ng p c  ~ = ~t, in the system (2. 9), we have,  af ter  mul t ip l i ca t ion  by vt and sum- 

mation over  i 
• [ ¢ ,  Y t , . . 1 " t  J 

6~ 

• - 1 3 ,  ~ . . . ? ~ " ,  - -  

~, re.v.(,~) 1 + 2it [e~(~) .1 v~v~ + g x~a ( ~  [6(m-x) 1~ vi + (2.12) " s t L n . . . n ,  . . . .  i j ,  n . . . n , ] ,  a 

~ "  = I~,71...~] ~,, ~ i  ") = [u,7).....1 ~ 
ry (ra) ] 

Here e0 (")  is the ncgmal,  and 0a(~ '~) the t angent ia l  components  of  the vector  t i,~...~ • 
rv(m+~) ] Then, e l i m i n a t i n g  t ~,....,~ v~ from the system (2. 9) for Pc ~ = p ,  we obtain a system 

of  d l f f e ~ n U a l  equations to de te rmine  the tangent ia l  components  of the vec tor  [V~,mn)...,~] 
on the equ ivo lumina l  wave 
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6 2pc - + + = + 

¢[,~m-x) ] = + (m - -  t )  r ' b = ,  , -~ .  t , . . . , ,  {g=Sx   1 xt,)}. + 
2FgP* {g=~xj~ ([~=~z.!=], = + (m - -  t )  g~b=. [~,~z-~!..] x,.)}, pxjq - -  

m-l) (m -- i) g~r~b~t= I.(m-t) ] x/t)}, ~jqVkV i -~ 21~g ~ {g=~=#~ ( [ ~ . . . . . . ] ,  + 
: t ~ ,  l n . . . n -  

2 p g ~  {g=~x~ ([~.~.~.!,]. = + (m --  t)  g~'b=° [~.~..). . j  xt-.)}.~x~¢ - -  

2~tg~ {g '~x~ ~Ltr vd=-l)~. -...,J.1 _- + (m - -  t)  g°'b=o [v~ ~-1)~. t~...~,] x~)}. ~X~qV~.V~ - -  
6= 

, o ~  (g=~o~'-~)x~) + ~ m g ~ F , b = o x ~ v ~ ( [ v ~ : ~ . ! . , , ] . ,  + (2.t3) 

c m  ( m  - -  1) g"SF"TPqb=~b..qx#~ ,3(m-t) 

• / ~ . . . / t J . ¢ ~  ~ Ij.W....Tt~*~ 

[~X) ( m - l )  1 ~, , ,  
Xj ,  n . . . n  ' ] ,., . . . .  

[e~ (m) i (m 1) g=~g~'g~b=c, b w x ~  l.~l."':t) l ~y, n...n~ vuvyvi) --  c m  - -  = 0 
" al, t n . . . n ,  ~ l p  

The relationship (2.12), where m - -  1 mtmt be taken imtead of r/t, yields the magnitude 
of the component, normal to the equivolumiual wave front, of the ve~tm bJ 'n) 

Thus, (2.11), (2.12) are differential relarAomllips from which the r~ngential ( in the 
irrotational wave case) and the normal (in the equ/voluminal case) components of the 

[ / ; ( m )  ] ~ ( m - l )  1 vector t i,n...n, are determined by means of the known Lf~'('m-t)~,n...n ] and l O(.i,a...nj . By 
virtue of(2.11) and (2.12), the right std~$ of (2.10),(2.13) can be considered known 
quantities t fonly Ivy], [V~, n ] . . . . .  , ~m-x~ r~(~) ~ , (m-x) l tV(,n..m ] and [oiy], t ~,n~ . . . .  , laiy, n...r . are 
determined. The zero order terms of [v~J and, according to (1.10), of [ O~y] axe deter-, 
mined from (2. 4) for the irtorational wave and from (2.3) for the equivoluminal wave. 
It is necessary to use the relationships (I. 3), (I. 5) or (1.7) to determine [~], [e~'y,nJ"~(z)~, 

fe.~. m) 1 • .., ~ , ,n . . .n ,  in terms of the discontinuities in the stresses 
P" ~'/P~] and their derivatives. 

/ ?  Thus, members of the ray expansions for the velocities, stres- / 

ses, and plastic strains, and therefore, the values of these func- 
tions behind the shock wave ate determined succcmtvely fzom 
( 2 . 10 )  - (2 .13) .  (2 .4 ) ,  (2. 8) and ( 1 . 1 0 ) .  

" " / /  $.  As an illustration, let m consider the p~opagation of a 
O / / , ~  3 spherical loading wave in an unstressed space. Let the stress 

( ~rrr _-- __ t9 (t), or= ---- O, %0 ---- O, P (t) > 0 be given 
on the boundary r = r 0 . Depending on the values of the =. 
parameters defining the medium o o / k0, vhl ~1~, ~12 / ~ls, v 

Fig. 2 and the pressure P (0) / k o , the mamrial t~hind the fron~ of 
a longitudinal wave can be strained elastically or plastically 

at t = 0 ,  ccm'esponding to different parts of the flow surface, the side surface, bottom, 
or edge. For pressures zv (0) < P0, where ~0 is determined by the inequalities 

/ o  = s~ys~y - -  2 (ko - -  ~o)" < O, / :  - - o  Oo < 0 (3.t)  
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the strain state behind the wave front is elastic. The graphs P*  = Ps*  (~, v) and 
P *  = P~* (a,  v), corresponding to the solution of the equations /x ° = O, /2 ° = O, 
p* = P (0)/.~" o ate constructed in Fig. 2. As is shown, the material will be in the elastic 
state behind the wave at the initial imtant when the pressure /9 ,  is in the domain bound- 
ed by the curve A B D  if k 0 / a o ~ c~*, or below the line P*  -~- Ps*  i f k o /  ao 
~ *  . Hete 

P,*=3~ ~ , P2"=3 ~ --~+='' i+~7' 

The heavy solid lines correspond to the values k o / o o < a* and the dashed to the 
values k o / a 0 ~ a*. The stressed state behind the wave corresponding to the side 
surface of the flow condition is determined by the pressure P (0) satisfi/ing the relations 

I1 = (8i~ - -  lllei~P) (Sij - -  I ] I ~ P )  - -  2 (k  0 - -  = :  -'~ T]2 I Ep I) 2 = 0 

12 = -- = -- ~o -- 7], le~[ < 0 (3.2) 

The plastic state corresponding to the bottom of the flow surface is determined by the 
pre~ure t9 (0) from the relationship, 

/2 = O, I~ < 0 (3.3) 

The state of stress determined by the initial pressure P (0) which sat/sties the following 
relatiom /1 = 0, /2 ~ 0 

ccarresponds to the edge of the flow surface. 
Presented in Figs. 3 and 4 are the curves 

P* = P,* (~, v), P* = P2* (:% v), 

or f2 = O, f l > O  

i - - v  ~ o  i 

for ~o / ko > i ,  ) / ~  (i - -  2v) / (t + ~) > t and.ao / ko < i ,  y ' 3  (t - -  2v)/(i  + 
v) > / c o  / ao . respectively ; they separate the domain of the elastic state from the plas- 
tic state corresponding to different parts of the flow surface. 

p'i 

J 

Fig. Z 

¢i .I/ 
Fig. 4 

n 

t 

0~ 't a~ 

A combined analysis of the inequalities presented shows that the plastic state of strain 
behind the wave corresponds to the side surface of the flow condition if the initial pres- 
sure is in the domain bounded by the curve A B C  and the P*  ax/s (Figs. S and 4). A 
plastic state sat/$fying the bottom of the flow surface corresponds to pressures in the 
domain bounded by the curve CBD . The initial pressures on the curve P** (a,-v)  
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(the section CB) cause a plastic flow corresponding m the edge of the flow surface. 
If  the initial pressures P *  are below the curve A L ~ D ,  then the behavior of the mater-  
ial behind the wave is elastic. 

.Now, let us determine the velocity, stress, and strain behind the surface of the strong 
discontintflty being propagated by considering the initial preum~ to be such that a plas- 
t ic strain corresponding to the s/de surface of the flow condition /x ----- O , / ,  < 0 for 
the case ~ (eP) = 0, ~]~ (eP) = cons t  is realized behind the wave. The dependences 
between u~e plastic strain rates and the stresses become 

]/'E"s.t~ ( ~  - -  = ~  "4- 1/'E',',' ¥" s~z s~l ~ 2", ( ~ o - -  ~ )  $, j  6, j  
~ i j  p 

Let us seek the velocity behind the front as 

vr  (r ,  t )  = - -  o "4- o ~ )  (ro -1- c z t  - -  r) - -  z ,_ ~.,(g) (re "t- c l t  - -  r) 2 + (3.4) ,'Z wT~ • • • 

Stress and strain series are formed analogously, but their members depend on discontinu- 
ities in the velocity and its derivatives on the surface of strong discontinuity. Hence, to 
determine the sU~Jses and strains in the plastic flow domain of the medium it is suffici- 
ent to find terms of the ray expansion (3.4).  

WriUng down the jump in the plastic strain rates [e~] and substituting them into 
(2.4) for the zero term of the series, we have after tramformatiom 

6¢o cz ~ 
o = -  3pl,  n (3.51 

D == 2 ]/ '3 F - -  0t (3;L + 2~), xt = D = / 9pczTI, ~1 = rlz + =//¢rl~ 

Here ro is the radius of the wave surface at the instant t = O, r = r o -i- czt is t h e  equa.  
tion of the wave st=face at an arbitrary instanr~ Integrating (3.5), we obtain 

(o ---- (ro __ clt) -x { A e  -x ' t  - -  koD (to + clt - -  cj / xl) (3pcl~lXl) -z') 

A == o° ro  + ~ (r0 - -  c1 / Xl)  (3pC~I']Xl) - |  

Here co ° is the value of [u~]~ at the initial i l l ,  ant. Evaluating the quantities levy] and 
substituting them into (2.10) where m ---- l ,  we obtain an equation to determine the first 
member  of the series (3.4) 

Y~ (t) = {3xt= / 2c~ - -  2 ~ E  / 3 p ~ l  "4-, 2c~ (to + c~t)"=} to + 

~qkoD / 2pczo-'q + 2 k c D E  / 9pcx=~ -p koD {6pcz~l (to "4" c~t}-x - -  2 ]/'3 ~ ko/pcrl(ro -1- ct) 

E = 3 F + a t  (3~, -f" 21~) 

Its so lut ion  is 

°<z~ = (ro + { S Fl (t) (ro -'r c10-I e-",t o~)or ° + clt) e ~,t ~t t 
o 

The tangential components of •e vector [vi,,~J are determined from the system (2.12) 
for m = i and equal zero. Behind the wave let the plastic strain corresponding to the 
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bot tom of the flow surface /. ---- 0, /~ < 0 be real ized.  The plastic strain rate in the 
p lag ic  flow zone of  the medium is c a l cu i a~d  by meam of (1 .5 ) .  The damping equa-  
tion for the zero member  of  the series (3.4),  in this case, has the form 

8(o { c~ } (3), - -  2It) zo 
8t Jr "ro "4- c,t Jr x~ (o •ffi - -  2 p c ~  

It) solution is written as 

• o) == (to Jr c ; t ) - *  { A ~ e  -~ '~  - -  3~oc~ (to Jr c~t - -  c~ / ~ )  (3~ Jr 2~)-~} 

A, == to°to j r  3ooc, (to - -  c / x~) (3~. + 2~) -1, ×: ---- (3), + 2~)'- / (6pc~;~) 

The first member  of  the series (3.4)  is determined from the equation 

8t + to Jr c~t + ×~ ----" . 

t 

(~)~) : (r 0 .-~ ¢lt)-le -'' {rO.:1 ~ -~- ~ F 2 (t)(r 0 -'~ tit)~xsL dt i 
o 

2c~ 3~ :  3;L "4- 2u,. l o) 3 (3k + 2p,) ~x.,. (3;k, - -  2p,) ao 38oX.,- 
F.,. (t) =. " (ro Jr c,t)" j r  ~ " c ~  .) "-~ ' " 4pc;Z)lS ' '-" 4Oc;~) (r0 --pctt) - -  )la 

When the init ial  pressure p (0) is such that plastic strain corresponding to the edge of  
the flow surface /, = O, ]~ --  O, is realized behind the wave, the equation to determine 
the zero term of the series (3. 4) is 

~ _  { c~ } (3). -4- 2~t)~o 2~ (kon~ Jr ~o~z) 
Jr 'ro j r  Cl " - ' ' ' ~  j r  ~1 h) . . . .  ~C11~ - -  ]/.~ .0C1~1~1 

o) = (to -Fc]t)  -~ { Ae  -)~d j r  B (to Jr- c~t - -  c~ / xs) ×s -~} 

A,  = o~°ro + B (fox ~ - -  cl) 

] 

(3.6) 

Here B is the right side of  (3.6) .  The first member  of  the series is determined from 
the following equation in this case :  

5 ~  > { c~ t Jr r o j r c l t  jr~ca (o n f f f i F  s( t )  

¢i 3z, 2 8~: 41~ °- (3). 4- 2~t) (=~ - -  ~ )  

60C13Y~ 2" J r  6 ~r~ pCt~=~ t J r  2 ~/~ ,oc12mTh (To j r  t i t)  - -  

p c l ~ h  (I"o ~- ¢~t) 4 p c 1 ~  4~c~ (ro ~ c~t) ~la 

' pc~"~)l~ 
tl 
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t 
~(1) .~_ ~' F s (t)exp (~tst)(r o ~- clt) dt t Q)~--.~ (r 0 "2- Clt) -1 e~p  ( - -  'K3~) t o t  ~0 ' 

0 

The tangential components of the vecWr [vi,,~], are missing in both |~is and preceding 
case .  

Limiting ourselves W two members, we can write down the solution fo~ the velocity 
(and therefore, for the ~ and s|ratn) in the plastic flow domain of the medium to the 
accuracy of small terrm of ~he c~der of (r 0 n u ct  ~ r)2° 

,(1) Let us deterrnine the initial values co °, ~,~o, in the solution for co (t) and co~ (t). 
The n~Tnal component of the velocity v r given by the series (3.4) on a sphere of radius 
r 0 should equal P (t) / PC1, i . e .  

P (t) I pc1 ffi - -co  "b co~) (cl t)  - -  U.. co~) (ct)" + . . .  (3.7) 

Setting t : -  0 in (3.7),  we obtain 

co (O) = co° = P (O) / 0c~ 

Differentiating (3.7) with respect to t and setting t ---- 0, we have 

co~ (O) = ~O.o ° = P '  (0) / p c / +  co' (0) / c~ 

Here co' is determined from the solution for e0 (0 .  Proceeding in flzis manner, we find 
all the initial values needed to determine the members of the series (3 .4 ) .  
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