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The velocity and stress fields behind the shock wave front are investigated by a
ray method in a three-dimensional elastic viscopiastic medium with hardening.
Recursion equations are obtained to determine the terms of the ray series, In the
case of load propagation by a spherical shock wave an analytical solution is
obtained for the velocity to second order accuracy in the distance along the nor-
mal from the wave front, The solution of wave problems in elasticity theory by
a wave method has been elucidated in [1], and in a one-dimensional viscoelastic
medium in [2],

1. An elastic viscoplastic body with a yield point dependent on the mean pressure ,
plastic strains, and plastic strain rate , is the model of the medium,. The dependence of
the yield point on the mean pressure and plastic strain rate is assumed linear, and on the
plastic strain, arbitrary, The flow surface is taken as

fa = (515 — MefP) (515 — MeP) — 2(ho — %5 + B(eP) + ma(eP) [eP ]2 =0 (1.1)

fr=—0—0g— || —my || =0
Here
- - —1; —1
s =133, eP = Y/3ehy, eP = */3efy
* .
$ij = 5.;,' —_ 56{,’, eijp = 85’ - Epa‘i.?

where ef, are the components of the plastic strain rates, o;; are the stress tensor com-
ponents, and €;; are the strain tensor components, Summation over repeated subscripts
is assumed throughout, where the Latin subscripts i, j, ... take on the values 1 to 3,
and the Greek letters «, 3, ... the valuesl, 2,

In the stress space the flow surface is a closed cone (Fig, 1) which expands depending
on P, and eP. The sides surface and bottom of the
cone are described by the first and second equations
in (1,1), respectively, The position of the flow sur-

[ .}

=0 face for ¢f; = 0 is shown by the solid line in Fig, 1,
! The dashed line shows the instantaneous state of the
-0

flow surface for e};==0. The relationships (1.1) are
a generalization of the model proposed in [3] for
Fig, 1 soils when the influence of viscosity and plastic strain
on the change in the loading surface is taken into
account, It is henceforth assurned that the strains are small and comprised of two parts,
elastic and plastic, ¢;; = ef; - ¢} The elastic smain tensor is related to the stresses

Hooke's law
>y Sy = le;kﬁu -+ 2p.eg}.
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Ray method of solving dynamic problems in elastic-viscoplastic media 133

where A, p are the elastic parameters of the medium, The spatial coordinates are assu-
med to be Cartesian, The strains are expressed in terms of displacements by meaas of

the C
€ auChy formula iy = 1/2 (ui)] + ufni)

The plastic strain rate tensor is connected with the stress tensor by the plasticity condi~
tion and the associated plastic flow law, which in the case of a state of stress correspond-
ing to the side surface f, = 0, f, << O of the flow condition is

4
o= g = el B —as +B(M) (D)
Eliminating the parameter ¥, from the plasticity condition expressed by the first equa-
tion in (1.1), and the associated plastic flow law (1, 2), we find the dependence of the
plastic strain rate on the stress

&P = =i _ VZ(ko — a5+ B) sy + VZa Vg 8. — 22 lo—as +B) ¢
Voo NV Sk an b dn ih
2
N="Th-+gan (1.3)

If the state of stress in the body corresponds to the bottom f, = 0, f, < 0 of the flow
surface, then the associated flow law is

a 1
e = ¥ g = — 5 Yaby (4.9)
Eliminating the parameter from the second equation of (1,1) and (1, 4), we find
e = °+co-i;;hle’| 8 (1.5)

For the angular points of the flow surface the plastic strain rate tensor ef; is related to
the stress tensor by the plasticity condition (1.1) and the associated plastic flow law
relationships ah dfa

&P = V1 ot + Vet (1.6)
Eliminating the parameters ¥, and 1, from (1. 6) and (1.1), we obtain
ij 2545 —as : P P| -
sij _ V28 {(lh—as+ Bt C+co+pmle l)nz}+6+co:}lle|5i,_(1_‘)

m M ¥ Sy Sy
The equations describing the dynamic behavior of the medium are
S5 — PVt = 0 (1.8)

Gint = Mi:8i; + B (Vi + Vi) — 2pel; — Aekdyy
S e MesP) — 2 (ko — a5 + B+ g | 2 < 0
? ’ — 06—y —p|eP| —ng|er| <O
e = (Gig),  if (S — MEP) (S — MEP) — 2(ko — a5 + B+ My e? >0
or — 0 — 0y —py|ef|—ny|e”| >0

Here U; are the components of the displacement rate vector, and @ (0;;) is the right
side of (1.3),(1.5) o (1. 7).
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It can be shown [4] that in media described by the rheological equations (1,1) there
exist two kinds of waves of strong discontinuity, irrotational and equivoluminal, which
are propagated at the elastic wave velocities ¢, = VW and ¢, = —-Vp. /p.
The following relationships

—cloyl =2 ] v + p (vl v; + fv;l v5), Loyl v; + pe [v;] =0 (1.9)

are satisfied for discontinuities in the velocities and stresses on these waves, Here v; is
the unit vector normal to the wave surface, where {1;] = wv; on the irrotational waves,
where ® = [1;] v;, and [v;] v; = O on the equivoluminal waves,

2, Let us represent the solution in the plastic flow domain of the medium for the
velocities, stresses and strairs as series in powers of %, where % is the distance along
the normal behind the front of the sutface of strong discontinuity

=1 lg = by ls Yo Franle = - @1)
Here [z, fnlz, ... are values of the functions on the front of this wave, The series
(2.1) for the velocity behind the front has the form
v; = vt |g — (0] + B (lvi,a) —0F D) + - (2.2)
(vi] = (i —vi7) Iz:

Here the plus superscript refers to the value of the function ahead of the strong discon-
tinuity wave front, and the minus superscript to the value of the function behind the
wave front, Analogous series can be written for the stresses and plastic strains,

Let us write (1, 8) in the discontinuities, From the first~order kinematic and geometric
compatibility conditions [5] (z; = z; (y*, ¥*, t) is the equation of the wave surface,
z;3 = O0z; / OyP, g*® are components of the contravariant metric tensor of the wave
surface and y!, y* are curvilinear coordinates on the surface)

(1,0 = Ul v+ 80 UL aze,  [fi]l=—clial + 11 (23)

and the relations (2, 2), we obtain an equation to determine the zero terms of the series
(2, 2) following [4]
P =100 + g (A [e7,] + 2 [e?] vivy) (2.4)

2 [51;1] = ¢,Q [v3] + €y ([245P] v; — (28,1 vovvy)

Here
Q = (Qo e Koct) (1 —_— Zrot + Kocctz)-l

2 is the mean curvature of the wave surface at any instant, Q,, K, are the mean
and Gaussian curvatures at the initial instant, To evaluate the remaining terms of the
ray expansion (2 2), let us determine the discontinuijties in the velocity derivatives of
any order [v1 n...n] on the surface of strong discontinuity, Members of the series of the
plastic strains and stresses also depend on the velocity discontinuities and velocity deri-
vatives on this surface,

To do this, let us differentiate (1, 8) m times with respect to the normal to the wave
surface (f, = f,;v:, where v; are co~tponents of the unit vector normal to the wave
front), Taking their difference at different sides of the wave surface, we obtain



Ray method of solving dynamic problems in elastic-viscoplastic media 135

[Pt = A (o0 )+ w (o) ] + [omen ) —

n.n K, kn...n

m...n
M B ) =2l ] (2:5)
[0, W] — e[ 1= 0

Not only the velocities and stresses, but also their derivatives of any order undergo a
discontinuity on the strong discontinuity wave, The compatibility conditions must be
satisfied for the discontinuities of the derivatives of these functions on the wave, Gene-
ralizing the derivation of the first- and second-order compatibility conditions [5], we
obtain the geometric and kinematic compatibility conditions of any order for the dis-
continuities of the derivatives [f&) | [f¥) ], which have the following form:

[ nl =% al i+ 8% [V 0] + (k 1) 8% 8" bao 1970, n] Ziazin
(2.6)
[ nl = = ¢ 1 al + & 7% ) 7
where b,, are components of the second fundamental quadratic form of the surface,

Substituting the kinematic compatibility condition (2, 7) into (2, 5), we obtain for the

discontinuities in the quanmies [V, 1 and {o{f7D

clefw = ‘57 (. al =& [ATR ) 85 — p([ofmid ] +

[ D)+ Mg, Ll G+ 20 162, (2.8)
(o0 ol — o —e Wm, ] + 3 (o) =0

Using the geometric compatibility conditions (2, 6) for the discontinuities of the quan-
tittes [{77Y] and [o{;¥ ] ,and eliminating quantities [oifn . nly 19570 ol
from (2, ¥), we obtain

(b + 1) (™D ] vivy =+ (b — pe?) [ ] = — 2p¢ 2 [vfm)

n..n

Ag*Pzyp lu(m) nh avi‘l‘guﬂxtp[v(mn ab a"h _},gasxm[v( N P

pg*lzis (Vi) 1o — g%z (V™) . -—-{g g A e = (2.9)

] —_

(m — 1) g*6g™baop [, ] e} + 0 gor ({770, ] —

WmgePg baoin [, ] s + g°023a (g5 (34750 n1) -
pmg"“g’ baoxti [v( , In.. n] TV Cmgasg"baexza [311 in.. n] - +
g*Pzjp (A [eR{m1) 1 65 4+ 2u [€R(M-10]), o 4+ A [ePS™ 1 v; + 2u [eRt™ ] v;

Kk, n..n i, n...n kk,n...n ij, n..n
m=1,2,3,...

To determine [ef], [e;7n), ..., [e0n) o] itis necessary to use the relationships (1.3),

(1. 5) or (1. 7). Multiplying (2, 9) by v; and summing over i, then setting oc* = A -+
2, we obtain a differential equation for the change in the quantities [u:”,'l’ al v =

o™ on the irrotational wave
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do{™
20¢ —g— — 206*Qo{™ - (A + p) g*B([™) ] Tha), 5 —

o™
P —3r -+ P'gcaziﬂvi {g° ;. [v{”‘;‘)ﬂ]. st (m— 1) gmg“bmxiq [Vf";;;l)n] Tz -

2% [Dg";l)n], s+ (m - 1) gpan"bpoxiq lv(;,nl—nl)n] x["}’ a T
)
5 (8% [0 ] + (m — 1) g2 baoZsa ({5 ] Zue} vi —
gobzisvs (g A0 ), + Aot baczs (10,10 (240)

Am (m.— 1) g*Pg°"gPbapbqtas [0 .1 Tia— cm (m — 1)g*Rge* gPtbeghaatisv; X

yin..n

(640 o) Trp — cmg*Pg=baozip [TV ], Vi — 2ug%Pzjpy, [eR(T-1)] , —

i, in..n i, .0 ij, n...m

Alerm 1 — 2uier™ Jvw; =0, m=123,...

kk,n...n ij, n...n

Letusset m — 1 instead of m and pc® = A + 2p in the system (2, 9). Multiplying
the equations obtained by z;, and summing over i, we find the relationships to deter~
mine the components of the vector [v{7’ ] on the irrotational wave which are tangent-

ial to the front
(b= e [0f,_] 2o = — o) — ug=Bbi (070, 7o +

Zovi g [P0 ] + c(m — 1) 88 baoZiptin [ ] e —  (211)

tj, n...n

8 .
(M — 1) g7 (A0 ] 19y — POTin 35 (AT 1] — € (2Qxv3+

,in..n

2%Pbyazipvi) (oD | — 2 [eR WD) vizy, + cg?® (TjaZix [Sf]170 11).

ij,n...n ij, n...n
Assuming pc® = p, in the system (2, 9), we have, after multiplication by v; and sum=

mation over
O+ W) (o221 v =
(m)

— 20 —g— — hg®Pzip [A™), 1.0 — pg*Pzivi (™), l.a—

8
pg*tzis [l’x"g)n___"].a"i - &{g“zjgvi B0 1a 1 (m — 1) g2Pg"basziv; X

ij.n..n

m- 8 e a
[521'. kst)n] 'zk‘i'} + p'&‘i [ » Jvi— A'm'g Bg“baaxkﬂlvg‘m) ] Ty +

[ (TN | ,in..n

¢ (m — 1) mg=0g=gMbecbegzp 7Y ] 15s -+ 2ge5ziav: [eRmD] o +

ij, n..n
MR ]+ 20 TR vivs + %P (Gl 1) vt (242)
emgaPgTth,qzip [6{T7D ] ov;

ij, n...n
o= () v, O = )17
Here o'™ is the normal, and o{™ the tangential components of the vector (Ui al.

Then, eliminating [WY,] v, from the system (2,9) for pc® = p, we obtain a system

of differential equations to determine the tangential components of the vector [vi7 ]
on the equivoluminal wave
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20c —(gaﬂm‘”"xis) — 2uQ (g*PF™zig) + (b + p) gz, +

hgP{g0zip (177D ol o + (m — 1) £°%bao (™D || 20}, pig +
2ug™ {g%Pzsp (UMD, ]. 2 + (M — 1) 87bae [0 ] 202)}, pTsg —

in...n
2ug™ {g%Pzja (V{0 1, « + (m — 1) g°%bas [0™D ] 212)}, psgvivi +
2ug™ {g2bz;g ([v(m-l) La+ (m—1) g% [v(mlnl),,] Zi:)}, pTig —
2}18"" {ganL.S ([U(:" ] a+ (m - 1) g"bu [v(""lnl) n] zh)}. pziqvkvi -
5:; (g *Bw(MDzig) + umgergeth ,x,av,‘.([v(”' altt (2.13)
(m — 1) 87 bop [W4750) ) 210) — g0 [3,‘,"'7.”,.1) +

o (m — 1) g5V gPbsbugtia (S0 ) 21pvy%s — em=Pgbest [T 1.« +

emgergeth o zss (S ] vev; — AgPzyg [e2(m-1) 1 o — 2ug®Pz;p ([ef(m-D)

ki n..n ij,n..nl: 2

- ‘ &
(€2 0], aviv)) + g%3zjp (& [s(7-p ]) Vevi — 2p ([ePM) ] vy —

ki, n..n i, n...n

[Sf](";l) n] VEViv 1) —com (m - 1) gaagﬂgmbaabﬂlx]ﬁ [“’u ln n] Iip = 0
The relationship (2, 12), where m — 1 must be taken instead of m, yields the magnitude
of the component, normal to the equivoluminal wave front, of the vector | v{fﬁ? ale

Thus, (2. 11), (2. 12) are differential relationships from which the tangential (in the
irrotational wave case) and the normal (in the equivoluminal case) components of the
vector [t ] are determined by means of the known [t{"5.}, ] and [o{}ab,] . By
virtue of (2.11) and (2, 12), the right sides of (2,10),(2.13) can be considered known
quantities if only [1], [vy,n], ... [fmin ] and [oy5), lofiln], ..., [offin2),] aze
determined, The zero order terms of [v4] and, according to (1.10), of [ay,] are deter-.
mined from (2. 4) for the irrotational wave and from (2. 3) for the equivoluminal wave,
It is necessary to use the relationships (1, 3), (1. 5) or (1, 7) to determine [ef}], 1)]

, [ef{) ] in terms of the discontinuities in the stresses

and their derivatives,

Thus, members of the ray expansions for the velocities, stres-
ses, and plastic strains, and therefore, the values of these func-
tions behind the shock wave are determined successively from

(2.10) = (2,13),(2.4), (2. 8) and (1.10).

-

8, As an illustration, let us consider the propagation of a
spherical loading wave in an unstressed space, Let the stress
Opp = =~ P (8),00 =0, 6, = 0, P () >>0 be given
on the boundary r = r,. Depending on the values of the
parameters defining the medium o, / ko, M/ Mg, Mg / M3, v

Fig, 2 and the pressure P (0) / k, , the material behind the front of

a longitudinal wave can be strained elastically or plastically

at t= 0, corresponding to different parts of the flow surface, the side surface, bottom,
or edge, For pressures P (0) << P, where P, is determined by the inequalities

1= siysiy =2 (kg — 202 <0, ff=—0—0<0 (3.1)
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the strain state behind the wave front is elastic. The graphs P* = P,* (a, v) and
p* = P,* (a, v), corresponding to the solution of the equations f,° = 0, f,° = 0,
P* = P (0)/%, are constructed in Fig, 2. As is shown, the material will be in the elastic
state behind the wave at the initial instant when the pressure P* is in the domain bound-
ed by the curve ABD if k,/ o, << a*, or below the line P* = Pg* ifk,/ 9o >
a*, Here
G (1 —v {—w 1 1 =2
Pr=33(im) P =3 ()= v =VITS
The heavy solid lines correspond to the values %, / 09 << a® and the dashed to the
values &,/ 0o >» a*. The stressed state behind the wave corresponding to the side
surface of the flow condition is determined by the pressure P (0) satisfying the relations

fr=(8ij — MekP) (s;j — MmeffP) — 2 (ko — a5 + My [P )2 =0
= —3— 3y — NgleP| <0 (3.2)

The plastic state corresponding to the bottom of the flow surface is determined by the
pressure P (0) from the relationships

=0, £ <0 (3.3)
The state of stress determined by the initial presswre P (0) which satisfies the following
lati
relations fi=0, 220 o f,=0, >0

corresponds to the edge of the flow surface,
Presented in Figs, 3 and 4 are the curves

P*=P#(,v), P*=Pr@v, Pr—3()(%- 1)
forog / ke >1, V3 (1 —2v) /(1 +v) > 1andoy/ ko <1,V3 (1 —2v)(1 +

v) > ko / 6y ,respectively; they separate the domain of the elastic state from the plas-
tic state corresponding to different parts of the flow surface,

p P, P‘ p»L P" g: :
c i
|
}
I
|
|
d ) g :
L~ D
A [ ———
0 o*
a*~l a x 0 -1 o
Fig, 3 Fig., 4

A combined analysis of the inequalities presented shows that the plastic state of strain
behind the wave corresponds to the side surface of the flow condition if the initial pres-
swre is in the domain bounded by the curve ABC and the P* axis (Figs. 3 and 4). A
plastic state satisfying the bottom of the flow surface corresponds to pressures in the
domain bounded by the curve CBD , The initial pressures on the curve P,* (2, )



Ray method of solving dynamic problems in elastic—viscoplastic media 139

(the section CB) cause a plastic flow corresponding to the edge of the flow surface.
If the initial pressures P* are below the curve 45D, then the behavior of the mater-
ial behind the wave is elastic,

Now, let us determine the velocity, stress, and strain behind the surface of the strong
discontinuity being propagated by considering the initial pressure to be such that a plas-
tic strain corresponding to the side surface of the flow condition f, = 0, f, << 0 for
the case B (¢p) = 0, 1, (¢P) = const is realized behind the wave, The dependences
between the plastic strain rates and the stresses become

sij ¥V 2sy (ko — a0) 4 VZiaV sgsg 8i— 22 (ko — as) 5

€:3P = o = i —
1 n n vV 8415kl 3n 3
Let us seek the velocity behind the front as
vo(r, )= — @+ 0P (g + et —r) — 0@ (rg+ et —rP ... (3.4)

Stress and strain series are formed analogously, but their members depend on discontinu~
ities in the velocity and its derivatives on the surface of strong discontinuity, Hence, to
determine the stresses and strains in the plastic flow domain of the medium it is suffici-
ent to find terms of the ray expansion (3, 4).

writing down the jump in the plastic strain rates [ef;] and substituting them into
(2. 4) for the zero term of the series, we have after transformations

S a koD
_5r+{7'0+clt +u1}m==—- 3pain

D=2V3u—a@\<+2p), o =D%/%cn, n=mn-+2uan

1

(3.5)

Here r, is the radius of the wave surface at the instant ¢ = 0, r = ry 4 ;¢ is the equa~
tion of the wave surface at an arbitrary instant, Integrating (3, 5), we obtain

© = (ro - ext) ™ {Ae™¥ — koD (ro + a1t — ¢1 / 1) (3pesmna) ™
4 =01+ koD (ro — &1 /%) (3P¢lfl%1)"
Here o° is the value of [v;]v; at the injtial instant, Evaluating the quantities [e};] and

substituting them into (2,10) where m = 1, we obtain an equation to determine the first
member of the series (3, 4)

1
S

!
4]
5t +{ro+c1-t +”‘}m$‘n=F1 2

Fi(t) = {32 [ 200 = 2% E [ 3pein + 2a1 (ro + a1t} ™} @ +

sakoD | 2pcn = 2kaDE [ 9peitnt + koD {Bpern) (ro + c1t)™d — 2V 3 kofpen(ry =+ ef)
E=3p+ at (3r + 2p)
Its solution is

0D = () & tyt el {mggro +{F 00, + e et dt}
0

The tangential components of the vector [v;,n] are determined from the system (2,12)
for m = 1 and equal zero., Behind the wave let the plastic strain corresponding to the
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bottom of the flow surface j, = 0, f, < 0 be realized, The plastic strain rate in the
plastic flow zone of the medium is calculated by means of (1.5), The damping equa~-
tion for the zero member of the series (3, 4), in this case, has the form

8w { o } (3A -+ 218) o
0 = — g

T\ TeFar T* 20c1Ms
Its solution is written as
. @ = (ro + ¢18)™! {Ase™* — 3ager (ro + o1t — €1/ %2) (3A 4 2)™1)
Ay = @°ro + 800y (ro — ¢/ %) (3h + 2u)Y, %y = (3h + 2u)°/ (Bpe™n.)

The first member of the series (3, 4) is determined from the eguation

6&)&) . { c1

Tlrta

5 T ”z} ol = F, ()

t

)

@) = (r, + o)L e {romgg + S Fy(t) (g + oy ¥ dt]
0

2 3xg? 3\ 4+ 2u . 3(3h + 2p) oaxe N (3A = 2) G _ 38ox2
Fa(®) ={ re+atf * 2 am } ®- 4pcyns ~ 4o (ro + ait) M3

When the injtial pressure P (0) is such that plastic strain corresponding to the edge of
the flow surface f, = 0, f, = 0, is realized behind the wave, the equation to determine
the zero term of the series (3,4) is

0] e (3A + 2u) 5o 2U (kons 4 SoMe)
ot {m + x;} == T 2ems V'3 oeimam (3.9)
@ = (ro + e1t)"1 {Ae™™ 4 B (rg <+ c1t — ¢1/ %3) #372}
Ay = 0°rg + B (rgns — ¢y)

1 {(31 + 2y + Bu2 _ 4p (3N <4- 20) (ams — M) }
=20 3perms 3perm 3 V3peamm

Here B is the right side of (3,6). The first member of the series is determined from
the following equation in this case :

5“’&) 2]
&t {ro+01t +x8}mnsf3(t)

Fa () = { &) 3 8z 42 3h 4-2p) (as —mg)

3 ( }=0 {ro + cit)? -+ 2c; 696131]]2 [ Vg clspmzm
(3A 2 2w (s — M) (BA - 200 21 (3A - 2) (s — Tho) } _

 Goayingt T 6 V3 perdngm 2 V3ouetmm (ra + 612
2 V3 (hots + GoM) | 3 (Bh - 2W)G0 (koM + Soy)
peimam (g =— a1t} 4pcPm T Tdpei(ro — i) g

Gr+2u)3 (3\ 20 dpEe—my | V'3 s (ko - Sume)
221213 Th - Vingm J° P st
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t
ol = (r, + ¢, t) exp (— xgt) {’ow% + S Fy(t)exp (#gt) (rg -+ ¢4f) dt}
0
The tangential components of the vector [v;,n], are missing in both this and preceding
case, )

Limiting ourselves to two members, we can write down the solution for the velocity
(and therefore, for the stress and strain) in the plastic flow domain of the medium to the
accuracy of small terms of the order of (ro + ct — r)%,

Let us determine the initial values ®°, mﬁ,’g, in the solution for ® (f) and wy’ (2).
The normal component of the velocity U, given by the series (3.4) on a sphere of radius
ro should equal P (f) / pe,, i.e.

P(t)/pey=—0+ 6 (c,t) — Yz 0P (ct)® + ... 3.7)
Serting ¢ = 0 in (3, 7), we obtain
0 (@) = =P(0)/ pc
Differentiating (3, 7) with respect to ¢ and setting ¢ = 0, we have

(JJS}) (O) = “)uoo = P’ (0) / 9512 + 0.)’ (O) / 21

Here o’ is determined from the solution for © (). Proceeding in this manner, we find
all the initial values needed to determine the members of the series (3.4),
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